Source code for motrackers.detectors.yolo

import numpy as np
import cv2 as cv
from motrackers.detectors.detector import Detector
from motrackers.utils.misc import load_labelsjson


[docs]class YOLOv3(Detector): """ YOLOv3 Object Detector Module. Args: weights_path (str): path to network weights file. configfile_path (str): path to network configuration file. labels_path (str): path to data labels json file. confidence_threshold (float): confidence threshold to select the detected object. nms_threshold (float): Non-maximum suppression threshold. draw_bboxes (bool): If True, assign colors for drawing bounding boxes on the image. use_gpu (bool): If True, try to load the model on GPU. """ def __init__(self, weights_path, configfile_path, labels_path, confidence_threshold=0.5, nms_threshold=0.2, draw_bboxes=True, use_gpu=False): self.net = cv.dnn.readNetFromDarknet(configfile_path, weights_path) object_names = load_labelsjson(labels_path) layer_names = self.net.getLayerNames() if cv2.__version__ == '4.6.0': self.layer_names = [layer_names[i - 1] for i in self.net.getUnconnectedOutLayers()] else: self.layer_names = [layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] self.scale_factor = 1/255.0 self.image_size = (416, 416) self.net = cv.dnn.readNetFromDarknet(configfile_path, weights_path) if use_gpu: self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) super().__init__(object_names, confidence_threshold, nms_threshold, draw_bboxes)
[docs] def forward(self, image): blob = cv.dnn.blobFromImage(image, self.scale_factor, self.image_size, swapRB=True, crop=False) self.net.setInput(blob) detections = self.net.forward(self.layer_names) # detect objects using object detection model return detections
[docs] def detect(self, image): if self.width is None or self.height is None: (self.height, self.width) = image.shape[:2] detections = self.forward(image) bboxes, confidences, class_ids = [], [], [] for output in detections: for detect in output: scores = detect[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > self.confidence_threshold: xmid, ymid, w, h = detect[0:4] * np.array([self.width, self.height, self.width, self.height]) x, y = int(xmid - 0.5*w), int(ymid - 0.5*h) bboxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) indices = cv.dnn.NMSBoxes(bboxes, confidences, self.confidence_threshold, self.nms_threshold).flatten() class_ids = np.array(class_ids).astype('int') output = np.array(bboxes)[indices, :].astype('int'), np.array(confidences)[indices], class_ids[indices] return output